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Fourier transform infrared (FTIR) spectroscopy and attenuated total reflection (ATR) sampling have
been used to detect adulteration of raspberry purees. A database of 871 spectra of pure and
adulterated fruit purees was collected between 1993 and 1994. Partial least-squares (PLS) regression
of the spectra onto a dummy variable representing sample type was performed. A 95% confidence
interval for the prediction values for pure raspberries was defined: within this region, spectra were
accepted as pure raspberry; outside this region, spectra were rejected. Using this criterion, 95% of
pure raspberries were accepted as such. Adulteration with apple and plum could be detected at
minimum levels of∼20% w/w, with sucrose at∼4% w/w. Spectra of 150 additional samples harvested
during 1995 served as further validation samples: comparable classification success rates were
obtained. The speed of FTIR spectroscopy makes this technique a rapid method for screening
raspberry purees for adulterants.
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INTRODUCTION

The authentication of food materials is of primary
importance at all links in the food chain, from raw
ingredients to finished products. Many fruit-based
products, such as jams, jellies, marmalades, and a
variety of other wares, are prepared from fruit purees.
These are generally supplied to the manufacturer in
frozen form or as sulfited pulps, and consequently their
authenticity can be difficult to establish. Fruit purees
are often of high value, and the temptation for the
supplier to add foreign material, such as sugar syrups
or quantities of another cheaper fruit, can be consider-
able. There is much interest within the food industry
in rapid techniques for addressing problems of this
nature. Fourier transform infrared (FTIR) spectroscopy
is potentially one such technique (Wilson and Goodfel-
low, 1994). It can be thought of as a molecular “finger-
printing” method: an infrared spectrum contains fea-
tures arising from vibrations of molecular bonds, and
the mid-infrared region (400-4000 cm-1) in particular
is highly sensitive to the precise chemical composition
of the sample. FTIR has been shown to be useful for a
range of identification problems in the food sector (Lai
et al., 1994; Briandet et al., 1996), including the clas-
sification of purees of different fruit species (Defernez
et al., 1995).
In this paper, we present a new method for the

detection of adulteration of raspberry purees. Although
there are many potential adulterant materials, likely
candidates are believed to be sucrose, apple puree, and
plum puree. The quantities of adulterant involved may
be quite large, in certain cases as much as 90% w/w.
Over the past 2 years, we have been conducting a
program of research to ascertain the potential of FTIR
spectroscopy for tackling this type of problem. We have
collected over 1000 spectra of different types of fruit

puree. These include pure fruits of different species
(raspberry, plum, apple, strawberry, blackberry, cherry,
apricot, and black currant), as well as raspberry purees
that have been deliberately adulterated with various
quantities of sucrose, apple, or plum. The majority of
samples have been prepared from fresh or freeze-
thawed fruits, harvested by ourselves from sites across
the United Kingdom; in addition, some samples were
prepared from freeze-thawed whole fruits supplied to
us by industrial collaborators. The authenticity of all
samples was therefore assured.
A key objective of this research program has been the

investigation of suitable data processing methods. Spec-
tra obtained by Fourier transform (FT) methods invari-
ably contain hundreds or even thousands of data values,
and chemometric techniques are generally required to
fully exploit data of this nature. One such method is
partial least squares (PLS) (Martens and Naes, 1989).
In its basic regression form, PLSmodels the relationship
between two data sets using a series of linear least-
squares fits. It is particularly useful for overcoming
some of the problems that are encountered when
conventional maximum likelihood methods are applied
to large, intercorrelated data sets. Historically, PLS has
been used mostly for calibration, for example, to estab-
lish relationships between spectroscopic and composi-
tional data. However, we have had good successes in
PLS-based discriminant analysis (Kemsley, 1996), in
which the experimental data are regressed onto binary
“dummy” variables that indicate class membership
[regression onto dummy variables is an accepted ap-
proach to classification problems (Green, 1978)]. This
approach was found to be effective for classifying
infrared spectra of olive oils of different types and of
different varieties of certain plant species. In the
present work, we use PLS regression onto a dummy
variable to distinguish spectra of raspberries from those
of “non-raspberries” (in which we include the adulter-
ated raspberry samples as well as the other pure fruit
samples).
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EXPERIMENTAL PROCEDURES

Instrumentation. All spectra were collected on a Spectra-
Tech (Applied Systems Inc.) Monit-IR FTIR spectrometer
system, operating in the mid-infrared (400-4000 cm-1). The
instrument was fitted with an air-cooled silicon carbide source,
a sealed and desiccated interferometer, and a deuterated
triglycine sulfate (DTGS) detector. One of two dedicated
sampling stations was equipped with an overhead attenuated
total reflection (ATR) accessory, which comprised transfer
optics within a desiccated chamber, sealed from the atmo-
sphere by two potassium bromide windows, through which the
infrared radiation was directed into a detachable ATR crystal.
The zinc selenide crystal was mounted into a plate with a
shallow trough for sample containment, and the crystal
geometry was 45° parallelogram with mirrored angled faces,
and nominally 11 internal reflections.
Samples. In the context of the present work, a single

“sample” is defined as a puree of between 6 and 10 fruits, plus
quantities of adulterant as appropriate. Purees were prepared
from fresh or freeze-thawed whole fruits, by pushing through
a fine metal sieve (soft fruits) or blending in a food mixer
(Braun Multiquick 300) (tree fruits). In total, 1023 samples
were prepared for this work; 871 of these were produced in
the period March 1993-March 1995, from fruits harvested in
the 1993 and 1994 growing seasons. Spectra of these samples
collectively define the “database” from which the PLS regres-
sion has been developed. Additional samples (152) were
prepared in the period March-September 1995. These include
purees of fruits from the 1995 harvest, as well as a range of
adulterated samples. Spectra of these additional samples have
been used to further demonstrate the robustness and stability
of the method. Detailed information on the composition of the
database and additional samples is given in Table 1. The
database has been randomly subdivided into three subsets,
designated “training”, “tuning”, and “test” sets (to be discussed
below).
Spectral Acquisition. All spectral measurements were

made at nominal 8 cm-1 resolution, with 256 interferograms
co-added before Fourier transformation. Single-beam ATR
spectra were collected of each sample, transformed to absor-
bance units using a background spectrum of water, and
truncated to 235 data points in the region 899-1802 cm-1. A

single-point baseline correction at 1802 cm-1 was performed,
followed by normalization on the integrated spectral area in
the region 899-1802 cm-1. Spectra were stored in this
pretreated form for subsequent data processing.
Data Processing. All data processing was carried out

using Matlab (The Math Works Inc, Natick, MA) running on
a personal computer equipped with a 90 MHz Pentium
processor and Microsoft Windows 3.1 operating system. Mac-
ros were written in-house for carrying out PLS regression,
based on the algorithm for orthogonalized PLS with one
dependent variable described in the text by Martens and Naes
(1989). The training set was used to obtain a series of
regressions of different dimensionalities and the tuning set
to identify which of these was the optimum. Using the
optimum regression model, an “acceptance” region was esti-
mated, within which the predicted results for spectra of pure
raspberries can be expected to occur. Once the data analysis
protocol was established, the test set was used as a series of
independent samples to confirm that the method had sufficient
generalization ability. The 152 additional samples from the
period March-September 1995 were used to further validate
the PLS regression model.

RESULTS AND DISCUSSION

The baseline-corrected and area-normalized spectra
defined as the training set are shown in Figure 1. In
our earlier work (Kemsley et al., 1995), we have found
that these two pretreatments are useful for removing
gross, unwanted instrumental effects from the data.
Baseline correction reduces the effect on the spectrum
of drift in overall instrument response that can occur
between the times of acquisition of the sample and
background spectra. The effect of area normalization
is somewhat more subtle: it can be regarded as a way
of standardizing the path length of the ATR crystal,
such that spectra collected on different crystals with,
say, disparate numbers of reflections can nevertheless
be compared. In the future, it will be important that
the spectral database reported here can be transferred
to other instruments, hence our choice of this pretreat-
ment.

Table 1. Description of Samples

database
additional samples

details
fruits

harvested

training
set

samples

tuning
set

samples
test set
samples details

fruits
harvested samples

raspberry 1993, 1994 1-55 1-53 1-51 raspberry 1995 1-5
blackberry 1993 56-59 54-57 52-55 plum 1995 6-10
plum 1993 60-64 58-62 56-59 raspberries adulterated with

5, 10, 20, 30, 40, 50% w/w plum
1995 11-40

strawberry 1993 65-89 63-87 60-83 mixtures of sucrose, glucose, fructose,
and maltose in solution (total
sugars content 30-40 g/100 mL)

n/a 41-60

black currant 1993 90-97 88-95 84-90 raspberry 1995 61-96
strawberry 1993 98-135 96-132 91-127 strawberry 1995 97-152
apple 1993 136-158 133-155 128-150
apricot 1993 159 156 151
cherry 1993 160
mixtures of strawberry and apple 1993 161-163 157-159 152-153
raspberries adulterated with
10, 30, 50, 70 90% w/w apple

1993 164-171 160-167 154-161

mixtures of strawberry and apple 1993 172-178 168-173 162-168
mixtures of strawberry and plum 1993 179-181 174-177 169-171
strawberry 1994 182-227 178-223 172-216
blackberry 1994 228-232 224-228 217-220
black currant 1994 233-236 229-231 221-223
cherry 1994 237-244 232-238 224-230
plum 1994 245-247 239-241 231-232
strawberry 1994 248-257 242-250 233-241
apple 1994 258 251
apricot 1994 259 252
raspberries adulterated with
2, 4, 6, 8% w/w sucrose

1994 260-299 253-292 242-280
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From Figure 1, we obtain an impression of the
complexity of the data set and the need for chemometric
methods to analyze it. Some preliminary conclusions
can nevertheless be drawn from visual inspection. First,
there is considerable variability across the entire data
set and also within individual fruit species. For ex-
ample, samples 1-55 are pure raspberries, and even
among these spectra there are considerable differences.
In addition, certain other fruits yield spectra that are
superficially quite similar to those of raspberries: for
instance, black currant (samples 90-97 and 233-236
in Figure 1). Some of the spectral features can be
attributed to specific chemical constituents. For ex-
ample, the bands centered on data points ∼20 and ∼60
(corresponding to ∼1725 and ∼1570 cm-1) arise from
pectins, and the major features in the region 155-215
data points (1180-950 cm-1) are mainly attributable
to carbohydrates. However, a complete spectral assign-
ment is a challenging task, and beyond the scope of the
present work. Moreover, the quantities of data involved
are too large for much to be accomplished by qualitative
analysis, and it is clear that statistical procedures are
required to obtain an objective appraisal of these kinds
of data.
PLS regression was applied to the training set spec-

tra, using a dummy dependent variable to indicate
sample type. The dummy variable is constructed as an
(n × 1) vector, where the number of observations n )
299, with entries of 1 for raspberries and 0 for non-
raspberries. Let y be this vector, mean-centered. The
spectral data are organized into an (n × d) matrix,
where the number of data points d ) 235. Let X be
this matrix, again mean-centered. PLS then seeks to
relate X to y with the model

in which Wr is a (d × r) matrix of PLS loadings and pr
is an (r× 1) vector of coefficients to be found by multiple
linear regression of y on the (n × r) matrix of PLS
scores, Zr. The subset size r is varied across a range,
and the optimum size determined, preferably by apply-

ing the regression to a second series of observations. In
the present work, these are provided by the tuning set.
The vector ŷtune obtained from applying a regression to
the tuning set data is given by

where Xtune is the matrix of the tuning set data, centered
with the mean of the raw training set data. Once the
optimum regression model has been established, it is
applied to a further series of observations, the test set,
from which an estimate of the model’s ability to gener-
alize beyond the data with which it was developed can
be assessed. The test set can be regarded as truly
independent, whereas the tuning set, although not
involved in calculating either the PLS loadings or the
regression coefficients, is nevertheless involved in deci-
sion making concerning regression parameters.
PLS regressions were obtained using r ) 5, 10, 15,

..., 50. These were applied to the tuning set data, and
a summary statistic calculated: if ytune represents a
dummy variable (again coded according to sample type
and centered using the mean of the training set dummy
variable), then the quantity (ytune - ŷtune) represents a
vector of residuals, and the standard deviation of its
elements can be used as an indicator of the performance
of the regression. This statistic was calculated for each
regression model and is plotted versus r in Figure 2.
The best regressions are obtained for 10 < r < 25, after
which the overfitting regime is entered. The minimum
standard deviation of the residuals occurs at r ) 15, and
this dimensionality was chosen as the optimum.
Figure 3 shows the results of applying this regression

model to the training and tuning set data. (For compat-
ibility with the original encoding scheme, the mean of
the training set dummy variable has been added to
these values; henceforth, it will be assumed that all such
“outputs” have been similarly transformed.) In both
cases, there is clear differentiation between the raspber-
ries and non-raspberries. Moreover, the general pattern
of results for both sets is similar, confirming that the
overfitting regime has not been entered.

Figure 1. Baseline-corrected, area-normalized spectra of training set samples.

y ) Zrpr ) XWrpr (1)

ŷtune ) XtuneWrpr (2)
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A quantitative rule was sought from which decisions
on the nature of individual samples could be made. In
particular, the outputs for the pure raspberry spectra
in both the training and test sets were studied, with
the aim of establishing criteria for “acceptance” and
“rejection”. First, the distributions of the outputs were
examined. In linear least-squares regression methods,
if a linear model is an appropriate fit for the data, then
the residuals should be normally distributed. (In ordi-
nary multiple linear regression, they are ideally nor-
mally distributed with a mean of zero; however, PLS is
a biased regression method and the residuals will not
necessarily have zero mean.) In the present case, in

which the dependent variables take the form of vectors
of binary values, the predicted outputs for the raspber-
ries are equal to (1 - residuals); thus, if the linear model
is appropriate, the raspberry outputs should also be
normally distributed. To test this, probability plots
were constructed (Seber, 1984), in which the outputs
for the raspberries in each set were sorted into ascend-
ing order and plotted against similarly sorted, normally
distributed random numbers. We find that these plots
are roughly linear (Figure 4), demonstrating that the
raspberry outputs can indeed be regarded as normally
distributed and hence that linear regression is an
appropriate technique. Moreover, the parameters of the
distributions describing the outputs from each set are
highly similar. For the training set raspberries, the
mean output ) 0.80 and the standard deviation ) 0.19.
For the tuning set raspberries, the mean ) 0.80 and
the standard deviation ) 0.21. These parameters are
clearly not significantly different from one another, from
which we infer that the population to which both sets
of outputs belong can be described by the pooled mean
µ ) 0.80 and pooled standard deviation σ ) 0.20.
Once the parameters of the normal distribution have

been established, the construction of confidence inter-
vals is straightforward. The boundaries of the 95%
confidence region are (µ - 1.96σ) and (µ + 1.96σ); hence,
we propose as the criterion for acceptance of a spectrum
as that of pure raspberry, that the output from the PLS
regression should fall within the range 0.41-1.19,
acknowledging that under these conditions 5% of genu-

Figure 2. Standard deviation of the tuning set residuals vs
number of PLS scores used in the regression.

Figure 3. Predicted y for the training and tuning sets, using
15 PLS factors in the regression.

Figure 4. Normal probability plots for the predicted y
obtained from the training and tuning set raspberry samples.
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ine raspberries will be falsely rejected (type I error). The
probability of wrongly accepting a non-raspberry (type
II error) is much harder to determine. For the current
training and tuning sets, we find that the non-raspberry
outputs are also approximately normally distributed;
Figure 5 shows a histogram of the outputs from the
training and tuning sets collectively. If the types of non-
raspberries encountered are exclusively those repre-
sented in the database, then it is possible to make an
estimate of the occurrence rate of type II errors.
However, it would be dangerous to assume that this will
always be the case; there may exist fruit species or
indeed non-fruit adulterants that are chemically even
more similar to raspberries, augmenting the chance of
making this type of error.
Using a regression based on 15 PLS scores, and

accepting as raspberry those spectra with outputs in the
range 0.41-1.19, the analysis was applied to the third
set from the spectral database, designated the test set.
The outputs obtained are illustrated in Figure 6. The
rejection zone is shaded. The results are broadly similar
to those obtained for the training and tuning sets. A
summary of the acceptance rates for each class and for
each of the three sets is shown in Table 2. Encourag-
ingly, the acceptance rate for the raspberries averages
∼95%, which is as expected for the confidence interval
defined; that is, type I errors are occurring at a rate of
∼5%.

It is worth examining the outputs for certain samples
in more detail. Figure 7 collates the results obtained
for the apple- and sucrose-adulterated samples in the
training, tuning, and test sets. Four of six of the 10%
w/w apple-adulterated samples are wrongly accepted as
pure raspberry; all samples with higher apple contents
are correctly rejected. This suggests that the detection
limit for apple is somewhat above 10% w/w; a realistic
estimate might be ∼20% w/w. Certainly, at contents
of 30% w/w, adulterated samples can be detected. For
the sucrose-adulterated samples, the majority of the 2%
w/w adulterated samples are wrongly accepted. Most
of the 4% w/w samples are correctly rejected, and we
suggest that the detection limit for sucrose is around
this level. All other samples (6 and 8% w/w) are
correctly identified as adulterated. To illustrate the
difficulty presented by adulterated samples of this
nature, typical spectra of a pure raspberry (training
sample 5) and two adulterated samples correctly identi-
fied as such (training samples 167 and 275, respectively)
are compared in Figure 8. The visible differences
between the spectra are minimal and comparable in
magnitude to the variations that exist within the series

Figure 5. Histograms showing the frequency distributions
of the predicted y for the combined training and tuning sets.

Figure 6. Predicted y obtained for the independent test set
(95% confidence region corresponds to 0.41 < y < 1.19) (*,
raspberry; O, non-raspberry).

Table 2. Percentage Correct Classifications Obtained for
Training, Tuning, and Test Sets

training set tuning set test set total

raspberries 98.2 92.5 94.1 94.9
non-raspberries 97.5 92.5 93.9 94.6

total 97.9 92.5 94.0 94.8

Figure 7. Predicted y obtained for the sucrose- and apple-
adulterated samples, plotted against sample number for each
of the training, tuning, and test sets.
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of pure raspberry spectra. We must therefore conclude
that the spectral differences which enable the raspberry
and non-raspberry samples to be distinguished are very
subtle indeed.
In any regression, it is interesting to examine the

coefficients in an attempt to place an interpretation on
the nature of the regression model. In the case of PLS
regression, we may define a vector of “composite”
calibration coefficients q, which directly express the
relationship between X and y:

Thus, q represents a single (d × 1) vector onto which
mean-centered spectra can be projected to yield the
output indicative of sample type. Figure 9 illustrates
the coefficients, plotted against data point; the abscissae
correspond to those of Figure 1. Unfortunately, it is not
possible to place any interpretation on this composite
vector, although from the sharpness of the features and
the complexity of the structure, we suspect that minor
constituents are playing an important role in the
analysis.
We will now consider the work that has been carried

out since the establishment of the spectral database and
data analysis protocol, namely, the application of the
methodology to an additional set of raspberry and non-
raspberry spectra collected in the period March-
September 1995. The results are presented in Figure
10. Of the 41 raspberries, 2 are wrongly classified;

again, this is approximately 5%, as is to be expected.
We conclude that the database of raspberry spectra
collected in the previous 2 years is compatible with those
from the 1995 harvest, notwithstanding climatic and
environmental factors which undoubtedly affect fruit
composition, as well as instrumental drift which is likely
to be occurring over the time scales involved.
We consider next the mixtures of raspberry and plum.

These contained plum in the range 5-50% w/w, and as
can be seen, just under half of these samples are
wrongly accepted as raspberry. On closer examination
of the outputs, it appears that the detection limit for
plum is ∼20% w/w. Whether this could be improved
upon by performing a separate regression just for plum
adulteration is a question we will seek to answer in the
future. However, our preferred strategy is a holistic
approach, since it is impractical to establish a separate
database for each potential adulterant. It is encourag-
ing, in fact, that the present protocol is able to reject
mixtures with as little as 20% plum, even though no
plum-adulterated samples were present in the database.
Similarly, the regression was challenged with a series
of spectra of sucrose, glucose, maltose, and fructose
mixtures in solution. While these samples neither
physically nor chemically resemble fruit purees, their
spectra do share many similar features, since carbohy-
drates exhibit relatively strong absorptions in the
infrared and are also major constituents of fruits.
Reassuringly, the sugar solutions are all comprehen-
sively rejected by the analysis. Finally, we note that of
the 1995 harvest of 56 strawberries, only 1 is wrongly
accepted as a raspberry; again, this is consistent with
the rejection rate obtained for the comparable database
samples.

CONCLUSIONS
In this work we have shown that it is possible to

distinguish infrared spectra of raspberry purees from
those of a range of non-raspberry materials, including
purees of other fruit species, mixtures of various sugars
in solution, and raspberry purees adulterated with
various proportions of non-raspberry material. The
chemometric method chosen for this work was PLS
regression onto a dummy variable encoded according to
sample type. From the results obtained for the training
and tuning sets, we have demonstrated that this linear

Figure 8. Typical spectra of purees of (a) pure raspberry, (b)
raspberry adulterated with 30% w/w apple, and (c) raspberry
adulterated with 4% w/w sucrose.

Figure 9. Regression coefficients plotted in “spectral” form.

y ) Xq, q ) Wrpr (3)

Figure 10. Prediction results for additional samples prepared
in the period March-September 1995 (*, raspberry; b, plum;
O, mixtures of raspberry/plum; +, mixtures of sucrose/glucose/
fructose in solution; ×, strawberry).
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method is appropriate. Through the use of the inde-
pendent test sets, we have shown that the method is
able to generalize beyond the spectra with which it was
trained and is acceptably stable over time. We believe
that the approach taken to encoding the dummy vari-
able (raspberry samples encoded as “1”, the wide range
of impure or non-raspberries all encoded as “0”) means
that the regression model works by positively identify-
ing pure raspberry spectra and is relatively insensitive
to the precise nature of non-raspberries. We are
optimistic that this approach will maximize the chance
of a successful outcome when adulterated or non-
raspberry material not included in the original database
is encountered. There is some evidence to support this
premise, in the form of the results obtained when the
analysis was presented with spectra of sugar solutions:
all were clearly identified as non-raspberry.
Certain potential adulterant materials were studied

in more detail: sucrose and apple and plum purees. We
estimate that the detection limits for these are ∼20%
w/w for apple and plum and ∼4% w/w for sucrose.
These are representative of levels at which adulteration
may occur. However, the real power of the present
analysis lies in its utility as a rapid screening method:
collection of an infrared spectrum takes a few minutes
only, and we believe that the regression model described
here is likely to be sensitive to a broad range of non-
raspberry material.

ACKNOWLEDGMENT

We thank the members of the U.K. Preserves Manu-
facturers Association for supplying a number of the
samples used in this work.

LITERATURE CITED

Briandet, R.; Kemsley, E. K.; Wilson, R. H. Discrimination of
arabica and robusta in instant coffee by Fourier transform
infrared spectroscopy and chemometrics. J. Agric. Food
Chem. 1996, 44, 170-174.

Defernez, M.; Kemsley, E. K.; Wilson, R. H. The use of infrared
spectroscopy and chemometrics for the authentication of
fruit purees. J. Agric. Food Chem. 1995, 43, 109-113.

Green, P. E. Analyzing Multivariate Data; Dryden Press:
Hinsdale, IL, 1978; Chapter 1 (“The Process of Data
Analysis”), pp 10-11.

Kemsley, E. K. Discriminant analysis of high-dimensional
data: a comparison of principal components and partial
least squares data reduction methods. Chemom. Intell. Lab.
Syst. 1996, 33 (1) 47-61.

Kemsley, E. K. Ruault, S.; Wilson, R. H. Discrimination
between coffea arabica and canephora variant robusta beans
using infrared spectroscopy. Food Chem. 1995, 54 (3), 321-
326.

Lai, Y. W.; Kemsley, E. K.; Wilson, R. H. Potential of Fourier
transform infrared spectroscopy for the authentication of
vegetable oils. J. Agric. Food Chem. 1994, 42, 1154-1159.

Martens, H.; Naes, T.Multivariate Calibration; Wiley: Chich-
ester, U.K., 1989; Chapter 3 (“Methods for Calibration”), pp
116-165.

Seber, G. A. F.Multivariate Observations; Wiley: Chichester,
U.K., 1984; pp 542-544.

Smith, J. A.; Runtz, L. A. Chemometrics with attenuated total
reflectance spectroscopy to detect common adulterants in
orange juice concentrate. InMethods to Detect Adulteration
of Fruit Juice Beverages; Nagy, S., Wade, R. L., Ed.;
AgScience: Auburndale, FL, 1995; Vol. 1.

Wilson, R. H.; Goodfellow, B. G. Mid-infrared spectroscopy.
In Spectroscopic Techniques for Food Analysis; Wilson, R.
H., Ed.; VCH: New York, 1994.

Received for review February 8, 1996. Revised manuscript
received August 22, 1996. Accepted August 28, 1996.X The
BBSRC, MAFF, and the European Union are acknowledged
for financial support.

JF960089L

X Abstract published in Advance ACS Abstracts, No-
vember 1, 1996.

3870 J. Agric. Food Chem., Vol. 44, No. 12, 1996 Kemsley et al.


